BOSCH

Relays

- High Capacity 50 Amp Mini Relays
- Standard Mini Relays
- Micro Relays
- Power Relays
- Connector Modules

MASTER INTERNATIONAL DISTRIBUTOR

$$
\begin{aligned}
& \text { Visit our website for other } \\
& \text { available Bosch Products }
\end{aligned}
$$

- DC Motors
- Horns
- Wiper Systems and Accessories
- Relays

$$
\begin{gathered}
\text { w w w.chiefent.com } \\
800.831 .7294
\end{gathered}
$$

Relay Applications	4
The Application Process	5
Explanatory Notes	6
O perating Modes	7
High C apacity 50 Amp M ini Relays	8
Standard Mini Relays	10
Micro Relays	12
Power Relays	14
Connector Modules	16

Application Notes

Applications

Relay Applications

B osch relays were originally designed for use in automotive applications. The great range of different versions are used in the most varied applications.

\square Wiper motors	\square Fan motors	\square S tarting motors
\square Cooling fans	\square Rear defrosters	\square Brake lamps
\square Headlamps	\square Electric seat adjustment	\square Electric seat heating
\square Electric window mirrors	\square Fuel pumps	\square Horn
\square C entral locking	\square Security systems	\square Many other uses

In addition to these purely automotive applications, B osch relays are ideal for switching 12 V or 24 V components. This is true for both mobile and stationary applications, where for example, electric motors are actuated. W ith these relays, a multiplicity of drive assignments can be implemented.

B osch relays are employed in

Automatic sliding doors

- Electric lawn mowers
- C ontrol cabinets
- Emergency generators
- C leaning devices

Devices for the disabled
Material handling technology

- Vending machines
- Agricultural equipment
\square Robot controls
- B oat electric devices
- G arage door drives
- B attery chargers
- Furniture adjustments
- Toys

Applications

The Application Process
Consideration of the following questions will aid in the selection of the proper relay to suit your application.

1. Type of load? (Resistive, Motor, Lamp, Inductive)
2. Size of load? W hat is the number of Amps being switched ON , carried during steady state performance, and being switched OFF?
3. Time-Current curve? For a motor or lamp load, what are the magnitude and duration of the in rush peak current during turn ON?
4. Multi-tasking? W ill one relay part number " A " switch a lamp for example in one circuit, and a second relay part number " A " switch a resistive load in another circuit?
5. Duty cycle? W hat is the expected 0 N (running) time for your load, and the expected 0 FF (resting) time?
6. Temperature conditions? W hat are the minimum and maximum storage and operating temperatures the relay will experience?
7. Relay life? How many switching cycles are required? 8. Coil suppression? W ill a resistor or diode in parallel to the coil be required to suppress a

Recommended wire sizes for all relays

Metric Size mm^{2}	SAE Wire Size Gauge	Permissible Continuous Current (approximate values)	
		Amps, at $25^{\circ} \mathrm{C}$	Amps, at $50^{\circ} \mathrm{C}$
	20	12	8.0
0.8	18	16	10.6
1.0	16	20	13.3
2.0	14	30	19.6
3.0	12	34	22.6
5.0	10	51	34.0
8.0	8	68	45.0
13.0	6	91	60.5
19.0	4	121	80.0

These values are to be used only as a guide.
Operating voltage temperature correction factors for all relays

For ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$	-40	-20	0	+23	+40	+60	+80	+100
Multiply table value by	0.75	0.83	0.91	1.00	1.07	1.15	1.23	1.31

[^0]
Explanatory Notes on Parameters

Overview

Relay applications

This catalog contains the technical information which a design engineer requires in order to select a relay for his particular requirements. Bosch DC relays were originally designed for automotive applications. We recommend prior technical clarification for all other applications, especially where requirements, loading or ambient conditions differ from those applying to automotive applications.

B osch DC relays are able to withstand exposure to extreme conditions and must comply with the following requirements: They must

- switch high powers
- function efficiently and reliably in a broad temperature range
- be extremely resistant to vibration
- have a long service life, and
- be highly climate-proof.

B osch DC relays are used to switch electrical devices featuring high power levels or which are sensitive to voltage loss. Relays relieve the load on control switches and make for small voltage drops with economical conductor crosssections. And relays make simple interlock circuits possible.

Mini-relays and micro-relays are ideal for use where the available space is restricted. Multiple connectors, together with pre-tested wiring harnesses, ensure simple assembly and the lowest possible error rate. This applies in particular to 0 EM , but also to customer service. The following versions of mini-relays and micro-relays are available:

- Relays without mounting bracket.
Easily plugged into buttable socket housings for screwing to mounting surface.
- Relays with mounting bracket. C onnected using a 5 -pole socket housing.
- Relays with solder terminals for soldering into PC boards.

Power relays can switch a nominal current of 50 A and more, and are suitable for switching motors, starting motors and other devices.

Micro-relay 1 Cap, 2 Magnet bracket and term. 3, 3 C oil, 4 Bobbin, 5 Armature, 6 Baseplate, 7 Damping resistor or diode, 8 C onnecting wire, 9 C ore, 10 Term. 1/2, 11 C ontact, 12 Spring, 13 Term. 4, 14 Term. 5.

Operating Modes

Switching operations

Response is the operation by which a relay is switched from its normal position to its operated position.

Opening is an operation which results in the electrical contact being opened.

Release (dropout) is the operation by which a relay is switched from its operated position to its normal position.

A switching cycle comprises the single response and release of a relay.

The number of switching operations comprises the total number of switching cycles.

Closing is an operation which results in contact closure.

L Inductive Load, D Free-wheeling diode, U S upply voltage

Service life

The mechanical service life is defined as the number of switching cycles, without electrical loading of the contacts, during which the relay remains operational.

The contact service life is defined as the number of switching cycles, with electrical loading of the contacts, during which the relay remains operational.

Switching contacts

The NO (Normally Open) contact is a relay contact which is open in the relay's normal position and closes as the relay changes to its operated position.

The NC (Normally Closed) contact is a relay contact which is closed in the relay's normal position and opens as the relay changes to its operated position.

The changeover contact is a contact assembly with three electric ally isolated connections consisting of an NO contact, an NC contact, and a common contact spring. W hen the switch position changes, the closed contacts open first, followed by the closing of the other contacts (which up to that point were open).

High Capacity 50 Amp Mini Relays

All are dust proof; all 12 V relays have a resistor in parallel to the coil to limit EM I

PART NUMBER	DESCRIPTION and Details \# 4 terminal relay	Illustration and Dimensions, Drawing	Terminal diagram; Circuit Diag.	VOLTAGE Operating Voltage Nominal - Max.	CONTACT MATERIAL T 87	MAXIMUM N.O. RESISTIVE LOAD Amps - Life Cycles	OTHER LOADS: See Group \# in LOAD TABLE
0332019103	S PST, resistor, \#	a	A 3 S 7	$12 \mathrm{~V}-15 \mathrm{~V}$	STO	50A - 150,000	1
0332019110	SPST, resistor, bracket, \#	b	A 3 S 7	$12 \mathrm{~V}-15 \mathrm{~V}$	STO	50A - 150,000	1
0332209137	S PDT, resistor	a	A 2 S 5	$12 \mathrm{~V}-15 \mathrm{~V}$	STO	50A - 150,000	2
0332209138	SPDT, resistor, bracket	b	A 2 S 5	$12 \mathrm{~V}-15 \mathrm{~V}$	STO	50A - 150,000	2
0332019203	SPST, bracket	b	A 1 S 1	$24 \mathrm{~V}-30 \mathrm{~V}$	STO	20 A - 250,000	3
0332209203	S PDT, bracket	b	A 2 S 4	$24 \mathrm{~V}-30 \mathrm{~V}$	STO	20A - 250,000	4
0332209204	SPDT, diode P	a	A 2 S 6	$24 \mathrm{~V}-30 \mathrm{~V}$	STO	20A - 250,000	4
0332209211	SPDT	a	A 2 S 4	$24 \mathrm{~V}-30 \mathrm{~V}$	STO	20A - 250,000	4

PART NUMBER	PULL-IN VOLTAGE	DROP-OUT VOLTAGE	RESISTANCE		Nominal Operating Current
			No resistor, or with diode	With resistor	
0332019103	$\leq 8.0 \mathrm{~V}$	1.2-5.0 V		75 ± 5 ohm	160 mA
0332019110	$\leq 8.0 \mathrm{~V}$	1.2-5.0 V		$75 \pm 5 \mathrm{ohm}$	160 mA
0332209137	$\leq 8.0 \mathrm{~V}$	$1.2-5.0 \mathrm{~V}$		$75 \pm 5 \mathrm{ohm}$	160 mA
0332209138	$\leq 8.0 \mathrm{~V}$	1.2-5.0 V		$75 \pm 5 \mathrm{ohm}$	160 mA
0332019203	$\leq 16.0 \mathrm{~V}$	2.4-10.0 V	255 ± 15 ohm		95 mA
0332209203	$\leq 16.0 \mathrm{~V}$	2.4-10.0 V	255 ± 15 ohm		95 mA
0332209204	$\leq 16.0 \mathrm{~V}$	2.4-10.0 V	255 ± 15 ohm		95 mA
0332209211	$\leq 16.0 \mathrm{~V}$	2.4-10.0 V	255 ± 15 ohm		95 mA

LOAD and LIFE CYCLE TEST DATA for HIGH CAPACITY MINI RELAYS

Contact testing conditions	Test Temp.	Relay Type	Load	Switching cycle
For STO (S ilver Tin O xide) contacts: Life cycles tested at $85^{\circ} \mathrm{C}, 13.5 \mathrm{~V}(27 \mathrm{~V}$ for 24 V relays)	$85^{\circ} \mathrm{C}$	High capacity	Lamp Resistive Motor	$1 \mathrm{Sec} 0 \mathrm{~N}, 9 \mathrm{Sec} 0 \mathrm{FF}$
$2 \mathrm{Sec} 0 \mathrm{~N}, 2 \mathrm{Sec} \mathrm{OFF}$				
$5 \mathrm{Sec} \mathrm{ON}, \mathrm{5ec} \mathrm{OFF}$				

HIGH CAPACITY MINI RELAY LOAD TABLE

LOAD GROUP	VOLTAGE	CONTACT POSITION	RESISTIVE LOAD		MOTOR LOAD		LAMP LOAD		INDUCTIVE LOAD	
			Continuous	Life Cycles	In rush/ Continuous	Life Cycles	Continuous	Life Cycles	Continuous/ Inductivity	Life Cycles
1	12 V	NO	$\begin{aligned} & 50 \mathrm{~A} \\ & 40 \mathrm{~A} \\ & 30 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{array}{r} 150,000 \\ 250,000 \\ 500,000 \\ \hline \end{array}$		$\begin{aligned} & 150,000 \\ & 250,000 \\ & 300,000 \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \mathrm{~A} \\ & 20 \mathrm{~A} \\ & 10 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 150,000 \\ & 250,000 \\ & 500,000 \end{aligned}$	N/A	N/A
2	12V	NO	$\begin{aligned} & 50 \mathrm{~A} \\ & 40 \mathrm{~A} \\ & 30 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 150,000 \\ & 250,000 \\ & 500,000 \end{aligned}$	$\begin{aligned} & 90 / 40 \mathrm{~A} \\ & 75 / 30 \mathrm{~A} \\ & 50 / 20 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 150,000 \\ & 250,000 \\ & 300,000 \end{aligned}$	$\begin{aligned} & 30 \mathrm{~A} \\ & 20 \mathrm{~A} \\ & 10 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 150,000 \\ & 250,000 \\ & 500,000 \end{aligned}$	N/A	N/A
		NC	$\begin{aligned} & \hline 20 \mathrm{~A} \\ & 15 \mathrm{~A} \\ & 10 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 100,000 \\ & 150,000 \\ & 300,000 \\ & \hline \end{aligned}$	35/15A 25/10A 15/5A	$\begin{gathered} 75,000 \\ 150,000 \\ 300,000 \\ \hline \end{gathered}$	$\begin{gathered} \hline 15 \mathrm{~A} \\ 10 \mathrm{~A} \\ 5 \mathrm{~A} \\ \hline \end{gathered}$	$\begin{array}{r} 50,000 \\ 50,000 \\ 600,000 \\ \hline \end{array}$	N/A	N/A
3	24V	NO	20A	250,000	40/16A	250,000	16A	250,000	16A/4mH	100,000
4	24 V	NO	20A	250,000	40/16A	250,000	16A	250,000	N/A	N/A
		NC	10A	250,000	N/A	N/A	5A	150,000	N/A	N/A

OPERATING CHARACTERISTICS		MECHANICAL CHARACTE RISTICS	ENVIRONMENTAL CHARACTERISTICS
Response Time	$\leq 10 \mathrm{mS}$	Random Vibration Test $10 \mathrm{~Hz} \ldots 1000 \mathrm{~Hz}$ for 4 h	O perating Temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Response Time, with Diode	$\leq 15 \mathrm{mS}$	Sine W ave Vibration Test 10 Hz ... 200Hz, 2.5 G 's for 4 h	Humidity Test 95\% for 7 days
C ontact Voltage Drop - New, at 10A	$\leq 50 \mathrm{mV}$	Drop Test - All sides 1 meter	S alt Spray Test- All sides 144 hours
(12 V, at 10 A) - After life test	$\leq 80 \mathrm{mV}$	Terminal Retention Force > 110 N	Dust Test 8 hours
(24 V, at 10 A) - After life test	$\leq 100 \mathrm{mV}$	Cover Retention Force $>220 \mathrm{~N}$	
Mechanical Life	> 1,000,000	Cover Crush Force $>220 \mathrm{~N}$	
Coil Inductance	$\leq 250 \mathrm{mH}$		

Illustrations and Dimension Drawings

Terminal Diagrams

Circuit Diagrams

Standard Mini Relays

PART NUMBER	DESCRIPTION and Details \#\# double 87 terminal	Illustration and Dimensions, Drawing	Terminal Diagram; Circuit Diag.		VOLTAGE Nominal - Max. Operating Voltage			CONTACT MATERIAL T 87	MAXIMUM N.O. RESISTIVE LOAD Amps - Life cycles			OTHER LOADS: See Group \# in LOAD TABLE
0332019150	SPST, bracket, \#\#	a	A 1	S 1	12 V	-	15V	Hard Silver	40A		200,000	6
0332019151	SPST, \#\#	a	A 1	S 1	12 V	-	15V	Hard Silver	40A	-	200,000	6
0332019155	SPST, diode, bracket, \#\#	b	A 1	S 2	12 V	-	15 V	Hard Silver	40A		200,000	5
0332209150	SPDT, bracket	b	A 2	S 4	12 V	-	15 V	Hard Silver	40A	-	200,000	7
0332209151	SPDT	a	A 2	S 4	12 V	-	15 V	Hard Silver	40A		200,000	7
0332209159	SPDT, resistor	a	A 2	S 5	12 V	-	15 V	Hard Silver	40A	-	200,000	7
0332209161	SPDT, resistor, bracket	b	A 2	S 5	12 V	-	15 V	Hard Silver	40A		200,000	7
0332209167	SPDT, resistor P	a	A 2	S 5	12 V	-	15 V	Silver Nickel	30A	-	250,000	8
0332209168	SPDT P	a	A 2	S 4	12 V	-	15V	Hard S ilver	30A	-	250,000	8

$P=P$ lated Terminals

PART NUMBER	PULL-IN VOLTAGE	$\begin{aligned} & \text { DROP-OUT } \\ & \text { VOLTAGE } \end{aligned}$	RESISTANCE		Nominal Operating Current
			No resistor, or with diode	With resistor	
0332019150	$\leq 8.0 \mathrm{~V}$	$1.0-5.0 \mathrm{~V}$	$85 \pm 5 \mathrm{ohm}$		140 mA
0332019151	$\leq 8.0 \mathrm{~V}$	$1.0-5.0 \mathrm{~V}$	$85 \pm 5 \mathrm{ohm}$		140 mA
0332019155	$\leq 8.0 \mathrm{~V}$	$1.0-5.0 \mathrm{~V}$	$85 \pm 5 \mathrm{ohm}$		140 mA
0332209150	$\leq 8.0 \mathrm{~V}$	$1.0-5.0 \mathrm{~V}$	$85 \pm 5 \mathrm{ohm}$		140 mA
0332209151	$\leq 8.0 \mathrm{~V}$	$1.0-5.0 \mathrm{~V}$	$85 \pm 5 \mathrm{ohm}$		140 mA
0332209159	$\leq 8.0 \mathrm{~V}$	$1.0-5.0 \mathrm{~V}$		75 ± 5 ohm	160 mA
0332209161	$\leq 8.0 \mathrm{~V}$	$1.0-5.0 \mathrm{~V}$		75 ± 5 ohm	160 mA
0332209167	$\leq 8.0 \mathrm{~V}$	$1.2-5.5 \mathrm{~V}$		75 ± 5 ohm	160 mA
0332209168	$\leq 7.0 \mathrm{~V}$	0.5-4.0 V	$65 \pm 5 \mathrm{ohm}$		184 mA

LOAD and LIFE CYCLE TEST DATA for STANDARD MINI RELAYS

Contact testing conditions	Test Temp.	Relay Type	Load	Switching cycle
For STO (Silver Tin 0 xide) contacts: Life cycles tested at $23^{\circ} \mathrm{C}, 13.5 \mathrm{~V}$			Lamp	$2 \mathrm{Sec} 0 \mathrm{~N}, 2 \mathrm{Sec} 0 \mathrm{FF}$
For Hard Silver (AgCU2Ni) contacts: Life cycles tested at $23^{\circ} \mathrm{C}, 13.5 \mathrm{~V}$	$23^{\circ} \mathrm{C}$	Standard	Resistive	$2 \mathrm{Sec} 0 \mathrm{~N}, 2 \mathrm{Sec} 0 \mathrm{FF}$
For Silver Nickel (AgNi20) contacts: Life cycles tested at $23^{\circ} \mathrm{C}, 13.5 \mathrm{~V}$			Motor	$2 \mathrm{Sec} 0 \mathrm{~N}, 2 \mathrm{Sec} 0 \mathrm{FF}$

STANDARD M INI RELAY LOAD TABLE

$\begin{aligned} & \text { LOAD } \\ & \text { GROUP } \end{aligned}$	VOLTAGE	$\begin{aligned} & \text { CONTACT } \\ & \text { POSITION } \\ & \hline \end{aligned}$	RESISTIVE LOAD		MOTOR LOAD		LAMP LOAD		INDUCTIVE LOAD	
			Continuous	Life Cycles	In rush/ Continuous	Life Cycles	Continuous	Life Cycles	Continuous/ Inductivity	Life Cycles
5	12 V	NO	$\begin{aligned} & 40 \mathrm{~A} \\ & 30 \mathrm{~A} \\ & 10 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 200,000 \\ & 300,000 \\ & 500,000 \end{aligned}$	50/25A	100,000	$\begin{aligned} & 30 \mathrm{~A} \\ & 20 \mathrm{~A} \\ & 10 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 100,000 \\ & 200,000 \\ & 500,000 \end{aligned}$	15A/8mH	50,000
6	12 V	NO	$\begin{aligned} & 40 \mathrm{~A} \\ & 30 \mathrm{~A} \\ & 10 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 200,000 \\ & 300,000 \\ & 500,000 \\ & \hline \end{aligned}$	50/25A	100,000	$\begin{aligned} & 30 \mathrm{~A} \\ & 20 \mathrm{~A} \\ & 10 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 100,000 \\ & 200,000 \\ & 500,000 \\ & \hline \end{aligned}$	24A/2mH	100,000
7	12 V	NO	$\begin{aligned} & 40 \mathrm{~A} \\ & 30 \mathrm{~A} \\ & 10 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 200,000 \\ & 300,000 \\ & 500,000 \end{aligned}$	50/25A	100,000	$\begin{aligned} & 30 \mathrm{~A} \\ & 20 \mathrm{~A} \\ & 10 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 100,000 \\ & 200,000 \\ & 500,000 \end{aligned}$	24A/8mH	100,000
		NC	20A	250,000	N/A	N/A	10A	100,000	15A/8mH	100,000
8	12 V	NO	$\begin{aligned} & 30 \mathrm{~A} \\ & 20 \mathrm{~A} \\ & 10 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 250,000 \\ & 300,000 \\ & 500,000 \\ & \hline \end{aligned}$	75/30A	100,000	$\begin{aligned} & 30 \mathrm{~A} \\ & 20 \mathrm{~A} \\ & 10 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 100,000 \\ & 200,000 \\ & 500,000 \\ & \hline \end{aligned}$	24A/8mH	100,000
		NC	20A	250,000	N/A	N/A	10A	100,000	15A/8mH	100,000

OPERATING CHARACTERISTICS		MECHANICAL CHARACTERISTICS		ENVIRONMENTAL CHARACTERISTICS	
Response Time	$\leq 10 \mathrm{mS}$	Random Vibration Test	$10 \mathrm{~Hz} \ldots 1000 \mathrm{~Hz}$ for 4 h	0 perating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Response Time, with Diode	$\leq 15 \mathrm{mS}$	Sine W ave Vibration Test	$10 \mathrm{~Hz} \ldots . .200 \mathrm{~Hz}, 2.5 \mathrm{G}$'s for 4 h	Humidity Test	95\% for 7 days
Contact Voltage Drop - New, at 10A	$\leq 50 \mathrm{mV}$	Drop Test - All sides	1 meter	Salt S pray Test-All sides	144 hours
(12 V, at 10 A) - After life test	$\leq 80 \mathrm{mV}$	Terminal Retention Force	> 110 N	Dust Test	8 hours
(24 V, at 10 A) - After life test	$\leq 100 \mathrm{mV}$	Cover Retention Force	$>220 \mathrm{~N}$		
Mechanical Life	> 1,000,000	Cover C rush Force	$>220 \mathrm{~N}$		
C oil Inductance	$\leq 250 \mathrm{mH}$				

Illustrations and Dimension Drawings

Terminal Diagrams

Circuit Diagrams

Micro Relays

PART NUMBER	$\begin{aligned} & \hline \text { DESCRIPTION } \\ & \text { and Details } \\ & \mathrm{P}=\text { Plated Terminals } \end{aligned}$	Illustration and Dimensions, Drawing	Terminal diagram; Circuit Diag.		VOLTAGE Operating Voltage Nominal - Max.			CONTACT MATERIAL T 87	MAXIMUM N.O RESISTIVE LOAD Amps - Life Cycles			OTHER LOADS: See Group \# in LOAD TABLE
0332017300	SPST, resistor P	a	A 1	S 1	12 V		16 V	STO	20A	-	300,000	9
0332017302	SPST, resistor, bracket P	b	A 1	S 1	12 V		16 V	STO	20A	-	300,000	9
0332207307	SPDT, resistor P	a	A 2	S 2	12 V		16 V	STO	20A	-	300,000	11
0332207310	SPDT, resistor, bracket P	b	A 2	S 2	12 V		16 V	STO	20A	-	300,000	11
0332207402	SPDT, diode P	a	A 2	S 3	24 V		30 V	STO	10A	-	250,000	12
0332207404	SPDT, resistor, bracket	b	A 2	S 2	24 V	-	30 V	STO	10A	-	250,000	12

$P=$ Plated Terminals

$\begin{array}{c}\text { PART } \\ \text { NUMBER }\end{array}$	$\begin{array}{c}\text { PULL-IN } \\ \text { VOLTAGE }\end{array}$	$\begin{array}{c}\text { DROP-OUT } \\ \text { VOLTAGE }\end{array}$	$\begin{array}{c}\text { RESISTANCE } \\ \text { No resistor, } \\ \text { or with diode }\end{array}$		$\begin{array}{c}\text { With } \\ \text { resistor }\end{array}$
0332017300	$\leq 8.0 \mathrm{~V}$	$\geq 1.5 \mathrm{~V}$		$78 \pm 60 \mathrm{hm}$	154 mA
Operating					
Current					

LOAD and LIFE CYCLE TEST DATA for MICRO RELAYS

Contact testing conditions		Load	Switching cycle
For STO (Silver Tin O xide) contacts:	Life cycles tested at $85^{\circ} \mathrm{C}, 12 \mathrm{~V} ; 23^{\circ} \mathrm{C}$ for 24 V	Resistive	$2 \mathrm{Sec} 0 \mathrm{~N}, 2 \mathrm{Sec} 0 \mathrm{FF}$
		Motor	$5 \mathrm{Sec} 0 \mathrm{~N}, 5 \mathrm{Sec} 0 \mathrm{FF}$
For Hard Silver (AgCU2Ni) contacts:	Life cycles tested at $23^{\circ} \mathrm{C}, 12 \mathrm{~V}$	Lamp	$1 \mathrm{Sec} 0 \mathrm{~N}, 9 \mathrm{Sec} 0 \mathrm{FF}$

MICRO RELAY LOAD TABLE

LOAD GROUP	VOLTAGE	CONTACT POSITION	RESISTIVE LOAD		MOTOR LOAD		LAMP LOAD		INDUCTIVE LOAD	
			Continuous	Life Cycles	In rush/ Continuous	Life Cycles	Continuous	Life Cycles	Continuous/ Inductivity	Life Cycles
9	12 V	NO	20A	300,000	30/15A	200,000	20A	150,000	4A/4mH	300,000
10	12 V	NO	20A	300,000	35/20A	100,000	N/A	N/A	N/A	N/A
		NC	10A	300,000	N/A	N/A	N/A	N/A	N/A	N/A
11	12 V	NO	20A	300,000	30/15A	200,000	20A	150,000	4A/4mH	300,000
		NC	10A	150,000	N/A	N/A	10A	75,000	N/A	N/A
12	24V	NO	10A	250,000	N/A	N/A	N/A	N/A	N/A	N/A
		NC	5A	250,000	N/A	N/A	N/A	N/A	N/A	N/A

OPERATING CHARACTERISTICS	MECHANICAL CHARACTERISTICS	ENVIRONMENTAL CHARACTERISTICS
Response Time $\leq 10 \mathrm{mS}$	Random Vibration Test $10 \mathrm{~Hz} . . .1000 \mathrm{~Hz}$ for 4 h	O perating Temperature $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}(12 \mathrm{~V})$
Response Time, with Diode $\leq 15 \mathrm{mS}$	S ine W ave Vibration Test $10 \mathrm{~Hz} . . .200 \mathrm{~Hz}, 2.5 \mathrm{G}$'s for 3 h	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}(24 \mathrm{~V})$
Contact Voltage Drop - New, at 10A $\leq 50 \mathrm{mV}$	Drop Test - All sides 1 meter	Humidity Test 95% for 7 days
- After life test $\leq 200 \mathrm{mV}$	Terminal Retention Force > 110 N	S alt S pray Test- All sides 48 hours
Mechanical Life $\quad>1,000,000$	Cover Retention Force $>220 \mathrm{~N}$	Dust Test 8 hours
Coil Inductance $\quad \leq 190 \mathrm{mH}(12 \mathrm{~V})$	Cover C rush Force $>220 \mathrm{~N}$	
$\leq 750 \mathrm{mH}(24 \mathrm{~V})$		

Illustrations and Dimension Drawings

Terminal Diagrams

B lade terminal size to D IN 46 244, similar to IS 0 8092:
Terms. 1 and $2(4): 4.8 \times 0.8 \mathrm{~mm}$; terms. 3 and 5: $6.3 \times 0.8 \mathrm{~mm}$

Terms. 1 and 2 (4): $4.8 \times 0.8 \mathrm{~mm}$; terms. 3 and $5: 6.3 \times 0.8 \mathrm{~mm}$

Circuit Diagrams

Cross-reference of terminal designations
Micro-relay Mini-relay Polarity

1	86	+
2	85	-
3	30	+

Power Relays

PART NUMBER	DESCRIPTION and Details	Illustration and Dimensions, Drawing	Terminal diagram; Circuit Diag.	VOLTAGE Operating Voltage Nominal - Max.		CONTACT MATERIAL T 87	MAXIMUM N.O RESISTIVE LOAD Amps - Life Cycles		OTHER LOADS: See Group \# in LOAD TABLE
0332002150	SPST, dual contact	a	S 6	12 V	- 16V	STO	75A	- 100,000	13
0332002156	SPST, with parallel and series diodes	a	S 3	12 V	- 15V	S ilver Nickel	75A	- 100,000	14
0332002250	SPST, pre-contact	a	S 2	24V	- 32V	Silver Nickel	50A	- 100,000	15
0332002256	SPST, with parallel and	a	S 3	24 V	- 30V	S ilver Nickel	50A	- 100,000	16

PART NUMBER	PULL-IN VOLTAGE	DROP-OUT VOLTAGE	RESISTANCE		Nominal Operating Current
			No resistor, or with diode	With resistor	
0332002150	$\leq 8.0 \mathrm{~V}$	1.5-4.0 V	46 ± 5 ohm	N/A	290 mA
0332002156	$\leq 8.0 \mathrm{~V}$	$1.5-4.0 \mathrm{~V}$	46 ± 5 ohm	N/A	290 mA
0332002250	$\leq 18.0 \mathrm{~V}$	$1.0-8.0 \mathrm{~V}$	130 ± 10 ohm	N/A	200 mA
0332002256	$\leq 18.0 \mathrm{~V}$	1.0-8.0 V	130 ± 10 ohm	N/A	200 mA

LOAD and LIFE CYCLE TEST DATA for POWER RELAYS

Contact testing conditions		Load
For STO (Siver Tin O xide) contacts:	Life cycles tested at $23^{\circ} \mathrm{C}$	Resistive
For Silver Nickel (AgNi20) contacts:	Life cycles tested at $23^{\circ} \mathrm{Cec} 0 \mathrm{~N}, 2 \mathrm{Sec} 0 \mathrm{FF}$	

POWER RELAY LOAD TABLE

LOAD GROUP	VOLTAGE	CONTACT POSITION	RESISTIVE LOAD		MOTOR LOAD			
			Life Cycles	In rush	Duration	Continuous	Life Cycles	
13	12 V	NO	75 A	100,000	400 A	1 Sec.	60 A	40,000
14	12 V	NO	75 A	100,000	250 A	1 Sec.	60 A	40,000
15	24 V	NO	50 A	100,000	200 A	1 Sec.	40 A	40,000
16	24 V	NO	50 A	100,000	150 A	1 Sec.	40 A	40,000

OPERATING CHARACTERISTICS	MECHANICAL CHARACTERISTICS	ENVIRONMENTAL CHARACTERISTICS
Response Time $\leq 15 \mathrm{mS}$	Random Vibration Test $10 \mathrm{~Hz} \ldots 1000 \mathrm{~Hz}$ for 3 h	O perating Temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Contact Voltage Drop - New, at 10A $\leq 100 \mathrm{mV}$	Sine W ave Vibration Test 10 Hz ... 100Hz, 2.5 G 's for 3 h	Humidity Test 95\% for 14 days
(24 V, at 10 A) - After life test $\leq 200 \mathrm{mV}$	Drop Test - All sides 1 meter	S alt S pray Test-All sides 144 hours
Mechanical Life $>1,000,000$	Terminal Retention Force > 110 N	Dust Test 8 hours
C oil Inductance $\quad \leq 200 \mathrm{mH}(12 \mathrm{~V})$	Cover R etention Force $>300 \mathrm{~N}$	
$\leq 500 \mathrm{mH}(24 \mathrm{~V})$	C over C rush Force $>220 \mathrm{~N}$	

Illustrations and Dimension Drawings

Accessories: Twin socket housing for energizing side (terms. 85 and 86). Order with AMP number 180907

Method of operation of leading contact

1. Closure of leading contact C oil energized; current flows in leading contact for a fraction of a second. 2. Closure of main contact C oil energized; current flows in main contact. The characteristics of the tungsten leading contact make it ideal for the considerable loads resulting from the separation arc when contacts are opening (inductive loads). The main contact ensures efficient current flow with minimum voltage losses. The tungsten leading contact (late-opening when the contacts open) ensures that the main contacts are not subject to separation arcs.

Circuit Diagrams

Polarity: Terms. 86 and 30 to +

Illustrations and Dimension Drawings

CONNECTOR MODULES FOR MINI RELAYS

Module \#3 334485008 (Metric) ${ }^{1}$

Socket \#3 334485007 (Metric) ${ }^{1}$

CONNECTOR MODULES FOR MICRO RELAYS

Socket \#3 334485046
(Metric) ${ }^{1}$ T3, T5
(Metric) ${ }^{2}$ T1, T2, T4

${ }^{1}$ Terminals: AMP Part: 42238-2 (loose piece), or 42100-2 (strip)
${ }^{2}$ Terminals: MTS Part: 26313.201.011

CHIEF ENTERPRISES INC.
Master International Distributor
922 N. O aklawn Ave. • Elmhurst, IL 60126-1018
Telephone:(800) 831-7294 • Fax: (630) 530-1154
W ebsite: www.chiefent.com

[^0]: C ycle life values for all relays are based on actual endurance tests performed by Bosch on a continuing basis. The cycle life expectancy may differ in your application. The values listed are reflective of customer requirements, and should only be used as a guide.

